LogoLogo
Home
  • Verb Documentation
  • Release Notes
  • Environment Settings
    • Authentication
      • Authentication Endpoint
  • Data Sources
    • Ingestion Methods
    • Table Sync Intervals
    • Data Source Integrations
      • Network Permissions
      • Microsoft SQL Server
      • PostgreSQL
      • MongoDB
      • Snowflake
      • Elasticsearch
      • DynamoDB
      • Google BigQuery
      • Firebase Cloud Firestore
      • Supabase
      • Cloud Files
      • Flat Files
    • Data Synchronization
      • Synchronization Methods
        • Full Synchronization
        • Incremental Synchronization
        • Change Tracking
        • Change Data Capture
      • Synchronization Intervals
      • Synchronization Status
        • Pausing and Resuming
      • Synchronization History
      • Schema Changes
      • Row Filtering
      • Schemaless & NoSQL
      • Managing Connections
      • Troubleshooting
  • Models
    • What is a Model
      • Elements of a Model
      • Model Management
    • Building a Model
      • Add/Remove Data
      • Relationships
      • Row-Level Security
      • Transformations
    • Advanced Model Information
      • Database Keys
      • Unstructured Data
      • Publishing Updates
      • Troubleshooting
      • Automatic Modeling
  • Data Transformations
    • What is a Transformation
      • Elements of a Transformation
      • Transformation Management
    • Building Transformations
      • Creating Transformations
      • Configure Transformation Steps
      • Transformation Steps
        • Calculator
        • Manipulate Text
        • Map Values
        • Remove Duplicates
        • Date Operation
        • Select Columns
        • Change Type
        • Group Data
        • Filter Data
        • Join Data
        • Append Rows
        • Pivot Data
        • Rank Data
        • Window Data
      • Complete and Publish
  • Collections
    • What is a Collection
      • Elements of a Collection
    • Building Collections
    • API Collections
      • Building API Collections
        • Connect Data Sources
        • Data Model
        • Select Data
        • Authentication and Security
        • Data Access API Keys
        • Data Access API Documentation
      • API Collection Versions
    • Advanced Collection Options
      • Time Zones
      • Currency Symbols
  • Tiles
    • What is a Tile
      • Elements of a Tile
    • Tile Management
      • Tile Data
    • Tile Actions
    • Custom Date Formats
    • Currency Conversion
  • Design Themes
    • What is a Design Theme
    • General Theme Settings
    • Data Visualization Settings
  • Account Settings
    • Integrations
      • Slack
  • Legal
    • Terms of Use
    • Privacy Policy
    • Subscription Agreement Terms
    • Subscription Agreement
    • Data Processing Addendum
Powered by GitBook
On this page
  • Aggregations
  • Implementing Pivot Data

Was this helpful?

  1. Data Transformations
  2. Building Transformations
  3. Transformation Steps

Pivot Data

PreviousAppend RowsNextRank Data

Last updated 3 years ago

Was this helpful?

Pivot data turns the unique values within one column of a table into the column name(s) for the resulting column(s).

The values within the Person Column are pivoted to be columns in the resulting table.

Aggregations

Pivot Data can then perform aggregation calculations on the resulting column values based on the selected aggregation type.

Along with None, the available aggregations include:

  • Count

  • Count (Including Nulls)

  • Count Distinct

  • Count Distinct (Including Nulls)

  • First Value (Ascending or Descending)

  • Last Value(Ascending or Descending)

  • Sum

  • Average

  • Median

  • Standard Deviation (Partial Sampling or Entire Population)

  • Variance (Partial Sampling or Entire Population)

The count functions result in a number value in the generated columns, and the Value functions result in the First or Last value depending on sorting result.

Implementing Pivot Data

Select the desired column(s) to show as rows. This will maintain the selected column header(s) in the resulting table.

Next, select Column Values to Show as Columns.

Input the new column names based on the values within the column. Verb will search the selected column for the matching value and creates a new column using the input value as the column header.

Finally select the value column to display. In the example below, this is the Miles run for the week.